TOP3A is required for the maintenance of the ovarian follicular reserve and oocyte quality

XueBi Cai, John Carroll, Karla Hutt

Background

Several lines of evidence from budding yeast, plants and flies suggest that TOP3A is critical for quality control in oocytes:

—repair of meiotic DNA double strand breaks; —repair of DNA

damage arising from exogenous stressors; ——maintenance of mitochondrial DNA (mtDNA).

■ The role of TOP3A in the oocytes of higher vertebrates has never been established.

Aim

■ To investigate the role of TOP3A in mammalian oocytes.

Methods

- Generation of novel mouse models with conditional loss of TOP3A in oocytes (cKO).
- Analysis (n=6 mice/genotype/age):
 - ——ovarian morphology;
 - ——follicle number;
 - ----apoptosis (TUNEL);
 - ---Top3a mRNA expression:
 - —ocyte morphology;
 - ----fertilisation rate;
 - —mtDNA copy number;
 - ----ATP level.

PN60 (postnatal day 60) cKO A TOP3A^{fl/fl}; GDF9^{t/t} TOP3A^{fl/fl}; GDF9^{t/t} TOP3A^{fl/fl}; GDF9^{t/t} TOP3A^{fl/fl}; GDF9^{t/t} TOP3A^{fl/fl}; GDF9^{t/t} TOP3A^{fl/fl}; GDF9^{t/t} TOP3A^{fl/fl}; GDF9^{t/t}

Results from adult mice:

- Follicle numbers—dramatic depletion of follicles in adult cKO mice; normal in Hets.
- Oocyte quality—normal oocyte morphology and fertilization rate in adult Hets.

Results from prepubertal mice:

- Follicle numbers—similar between prepubertal WT and cKO mice.
- **Top3a** mRNA (in situ hybridization) expressed by oocytes within primordial, primary, secondary and antral follicles, while absent in cKO oocytes.
- TOP3A protein (GFP-tagged)——colocalizes with mitochondria during oocyte maturation.
- mtDNA copy number——dramatically reduced in TOP3A-cKO oocytes.
- Oocyte quality—almost all oocytes from TOP3A-cKO mice failed to progress beyond fertilization.

Significance

 First evidences the critical role of TOP3A for mammalian oocytes.